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The dynamics of nitrogen (N) loss in the ocean’s oxygen-deficient
zones (ODZs) are thought to be driven by climate impacts on ocean
circulation and biological productivity. Here we analyze a data-
constrained model of the microbial ecosystem in an ODZ and find
that species interactions drive fluctuations in local- and regional-
scale rates of N loss, even in the absence of climate variability. By
consuming O2 to nanomolar levels, aerobic nitrifying microbes
cede their competitive advantage for scarce forms of N to anaer-
obic denitrifying bacteria. Because anaerobes cannot sustain their
own low-O2 niche, the physical O2 supply restores competitive
advantage to aerobic populations, resetting the cycle. The result-
ing ecosystem oscillations induce a unique geochemical signature
within the ODZ—short-lived spikes of ammonium that are found
in measured profiles. The microbial ecosystem dynamics also give
rise to variable ratios of anammox to heterotrophic denitrification,
providing a mechanism for the unexplained variability of these
pathways observed in the ocean.
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Bioavailable nitrogen (N) is a key macronutrient that limits
the rates of biological activity. In the ocean, the concentra-

tion of nitrate (NO3
−), the major form of bioavailable N, is re-

duced by anaerobic reduction to biologically inert N2 gas within
small subsurface O2-deficient zones (ODZs) (1). The volumetric
rate of N removal within these zones is limited by the downward
flux of organic matter from sinking particles (2). In turn, ODZ
volumes are strongly dependent on the regional O2 content of
the thermocline in which they reside (3). Variations in climate
have major impacts on the supply of O2 and organic matter to
the ODZ, driving changes in the magnitude of N removal across
a wide spectrum of timescales, from months to millennia (4–6).
Microbial community structure also plays a major role in reg-

ulating N2 gas production. Anaerobic processes, such as anammox
and heterotrophic denitrification, can tolerate up to micromolar
amounts of O2, allowing them to coexist with aerobic nitrifying
microbes, which become limited by O2 only at nanomolar con-
centrations (2, 7–14). Because both anaerobic and aerobic me-
tabolisms utilize the key N-cycle intermediates ammonium (NH4

+)
and nitrite (NO2

−) as substrates, their coexistence results in re-
source competition whose outcome is determined by nanomolar
variations in O2 (15). When nitrification is dominant, the reox-
idation of partially denitrified NO2

− to nitrate (NO3
−) reduces the

magnitude of N2 production and increases O2 consumption; when
aerobic nitrifiers are excluded by O2 scarcity, NO3

− is efficiently
reduced all of the way to N2 (15, 16). Here we demonstrate that
resource competition between aerobic nitrifiers, anaerobic deni-
trifiers, and anammox bacteria can also lead to regional-scale
temporal variability in the rates of N and O2 cycling, even with
constant physical fluxes of O2 and organic matter into the ODZs.
To examine the role of microbial interactions in the dynamics of

fixed N loss, we analyzed a microbial ecosystem model (15) em-
bedded within an ocean general circulation model (17, 18). The

steady three-dimensional ocean circulation is optimized to fit
tracer observations (temperature, salinity, radiocarbon, and CFC-
11), implying realistic ventilation rates and pathways of the ODZs
(19). We focus on the world’s largest ODZ, in the eastern tropical
North Pacific (ETNP) (20), by restricting the boundaries of the
model from the equator to 35° N, the coast to 180° W, and the
surface ocean to 2,000-m depth. Observed annual mean concen-
trations of O2 and NO3

− (21) are transported into the domain at
its open boundaries to ensure their realistic supply to the ODZ
region. The circulation does not vary over time, leaving microbial
ecosystem dynamics as the sole source of temporal variability.
The microbial ecosystem model simulates the biomass of four

microbial functional groups and the biogeochemical cycles of N
and O2 (15). In the surface ocean, phytoplankton produce dis-
solved organic nitrogen (DON) and sinking organic particles
from inorganic N (NH4

+, NO2
−, NO3

−). DON is remineralized
by heterotrophic bacteria using O2, or multistep denitrification
(reduction of NO3

− to NO2
−, then to N2) below a critical O2

threshold (O2
crit). The NH4

+ and NO2
− released by heterotrophs

is used by autotrophs: slow growing and O2-inhibited anammox
bacteria, or aerobic archaea and bacteria that either perform
NH4

+ or NO2
− oxidation with nanomolar O2 sensitivities. Au-

totrophs assimilate NH4
+ from seawater for growth. Because the
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C:N ratio of bacterial biomass (6.8 ± 1.2) (22) matches that of
organic matter within the ODZ (6.8) (2) heterotrophs satisfy
their nutrient demand via NH4

+ remineralized from DON (23).
DON is released by phytoplankton, sinking particles, and all
microbial populations during mortality.
In previous work (15), we assessed the model fit to observed

long-term mean (climatological) fields of O2 and NO3
−, and

profile compilations of NH4
+, NO2

−, and biologically produced
N2 gas (N2

xs) from within the ETNP. These data reflect the
characteristic vertical profiles of key chemical indicators of the
metabolic status of the ODZs: subsurface maxima in NO2

− and
N2

xs, reduced accumulations of NO3
−, and nanomolar levels of

NH4
+ and O2 (SI Appendix, Fig. S1). To constrain uncertainty in

model parameters, we varied microbial growth, mortality, and
nutrient affinities over two orders of magnitude, spanning values
observed in laboratory cultures and process studies (SI Appendix,
Table S1), and compared the resulting simulated profiles to the
observations (SI Appendix, Fig. S1). Of the 90 parameter com-
binations tested, half reproduce all observed chemical profiles
simultaneously, implying a realistic balance of physical and bi-
ological fluxes of N and O2. This ensemble of model simulations
that reproduce the data are used for further analysis and to
quantify the sensitivity of our main results.
The simulated rate of regional N loss aligns with geochemical

estimates based on measurements of the accumulation of N2
xs,

the deficits of NO3
−, and its isotopes (19, 24), but fluctuates

strongly over time (Fig. 1A) despite the steady rates of ocean
circulation. These fluctuations are not caused by changes in the
flux of organic matter or the physical supply of O2 to the ODZ
region, which are stable (SI Appendix, Fig. S2). The fluctuations
persist across a wide range of physiological and ecological as-
sumptions: regardless of the precise O2 sensitivities of the mi-
crobial populations (yellow, red, and green lines in Fig. 1A); with
and without inclusion of dissimilatory NO3

− reduction to NH4
+

(DNRA) (25) (blue line in Fig. 1A); whether heterotrophic de-
nitrification is represented as a facultative or obligate process (1,
26) or if its steps are mediated by a single or multiple populations
(27) (SI Appendix, Fig. S3). Fluctuations in N loss are found
under all ecosystem model parameter combinations that satisfy

the available tracer data constraints (SI Appendix, Fig. S4). Their
amplitude is large relative to time-mean rates, averaging 43% ±
35% (SD) on regional scales and 233% ± 123% (SD) at the
locations where fluctuations occur. While the regionally in-
tegrated N-loss rate lacks a characteristic frequency, local rates
of N loss vary through semiregular oscillations (Fig. 1B). The
complex fluctuations in the regional-scale N loss (Fig. 1A) thus
arise from the integration of the many localized oscillators with
distinct periods, phasing, and amplitudes.
The oscillations are also evident in aerobic metabolic rates,

which together with the changes in N loss, drive large-scale
fluctuations in the concentrations of O2, NH4

+, and NO2
−, (Fig.

2). Fluctuations are strongest at the edge of the ODZ’s anoxic
core, in a “suboxic” zone, where the full diversity of simulated
microbial populations coexist—aerobic NH4

+ and NO2
− oxi-

dizers as well as autotrophic anammox bacteria and heterotro-
phic denitrifiers (15). In the anoxic core of the ODZ, where
aerobic metabolisms are excluded, the chemical environment,
the resident microbial populations, and their metabolic rates are
relatively stable over time. The coincidence of variability in zones
of long-term nitrifier–denitrifier coexistence implies that the
oscillations are driven by interactions between these microbial
groups. Indeed, if the nitrifiers are separated from autotrophic
anammox and heterotrophic denitrifiers by imposing non-
overlapping O2 thresholds, oscillations do not arise in the model
simulations (SI Appendix, Fig. S5).
The mechanism of these oscillations derives from a funda-

mental ecosystem dynamic: consumption of O2 by aerobic mi-
crobes provides an advantage for anaerobes, but their niche
cannot be sustained against the physical O2 supply without in-
termittent dominance of the aerobes. In the model ODZ, the
consumption of O2 by NO2

− oxidation (∼41 Tg O2 y−1) vastly
outweighs NH4

+oxidation (∼4.9 Tg O2 y
−1); NH4

+oxidation thus
plays little role in the oscillatory dynamic. The complete eco-
logical sequence of the oscillation is illustrated by the phase di-
agram of NH4

+ and O2 at a single point in space (Fig. 3). When
O2, NH4

+, and NO2
− are plentiful, NO2

− oxidizing bacteria ex-
perience net population growth (location Fig. 3 A and B, i).
Their metabolic rate exceeds the physical O2 supply and depletes
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Fig. 1. Time series of unforced variability in the regional and local rates of N loss from the ODZ of the eastern tropical North Pacific. (A) Rates (1 Tg N y−1 =
1012 g N y−1) are spatially integrated across the ETNP in the standard model simulation (black) and sensitivity cases (gray and colors). Fluctuations occur
regardless of physiological or ecological uncertainties (SI Appendix, Table S1): whether O2 tolerances of anaerobes are 1 μM (yellow) or ≥10 μM (red), if the
two steps of nitrification (NH4

+ and NO2
− oxidation) have different nanomolar O2 sensitivities (green), or if an additional metabolism [dissimilatory nitrate reduction

to ammonium (DNRA)] is incorporated into the model (blue). They also hold across wide ranges in other microbial ecosystem parameters (gray, SI Appendix, Table
S1). (B) Time series of local rates of N loss in locations with representative ecosystem oscillations (12°N, 90°W at 100 m and 25°N, 113°W at 400 m).
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the available O2 and NO2
− (Fig. 3 A and B, ii). The loss of O2

promotes anaerobic metabolisms, but the loss of NO2
− also de-

pletes the energy available for heterotrophic growth fueled by
denitrification. The NO2

− oxidizers can short circuit complete
heterotrophic denitrification to N2 because of their higher effi-
ciency of NO2

− utilization (15), which is required by the model to
reproduce the observed distribution of NO2

− within oxic and
anoxic waters (SI Appendix, Fig. S6). In contrast, the depletion of
NO2

− has little effect on anammox bacteria because they are
generally limited by NH4

+ in the model, consistent with rate
measurements from the ODZs (1, 28). Thus, as NO2

− is drawn
down by oxidation, the decline of heterotrophic denitrification
relative to anammox (Fig. 3C, iii) depletes NH4

+ to levels that, in
turn, limit the NO2

− oxidizers, slowing their rate of O2 and NO2
−

utilization (Fig. 3B, iii). The cessation of O2 consumption allows
its concentration to be gradually replenished by the physical
supply, while NO2

− simultaneously accumulates due to an excess
of NO3

− reduction over NO2
− oxidation (Fig. 3A, iv). O2 accu-

mulation selects against anammox (Fig. 3C, iv), while NO2
− ac-

cumulation fuels a rapid burst of N loss through heterotrophic
denitrification (Fig. 3D, i). The NH4

+ liberated from DON
during this denitrification pulse restores it to levels that sustain

NO2
− oxidizer growth, a condition that again favors net O2 con-

sumption, and the oscillation starts anew.
The ecosystem oscillations predicted here arise in a com-

pletely steady physical environment, but the supply of organic
matter and O2 to the ODZ exhibit strong temporal variations in
the real ocean. We tested the impact of physical variability on the
intrinsic ecosystem oscillations by first imposing empirically derived
seasonal fluxes of organic particles and then stochastic changes in
the rates of ocean circulation (SI Appendix, Fig. S7). Ecosystem-
driven variability persists, and is even amplified, in the presence of
these external forcings, suggesting the oscillations would act as a
strong source of variability in the natural environment.
Top-down ecological controls on microbial populations also

have the potential to limit fluctuations caused by resource
competition. We represented grazing losses in the model by
applying a quadratic mortality term to all microbial populations,
assuming predation is unselective (SI Appendix, Fig. S8). We
varied the intrinsic grazing rate by an order of magnitude and
find that while the variance in regional N loss is unchanged
under weak grazing, under strong grazing the variance is de-
creased by an order of magnitude (SI Appendix, Fig. S8A).
However, adding this strong grazing term causes an unrealistic
build up of NH4

+ concentration in the anoxic core of the ODZ

BA

DC

Fig. 2. Spatial distribution of ecologically driven oscillations within the ODZ. The spatial distribution of oscillation amplitudes (colors) is shown along a zonal
cross-section through the model ODZ (20−28°N). Oscillation amplitudes are computed as the difference between maximum and minimum values over a 10-y
simulation for (A) the N loss rate, (B) the O2 consumption rate, and the concentrations of (C) NH4

+ and (D) NO2
−. Variability is overlain by time-mean

concentrations of O2 (in μM; black contours). Gray shading denotes the western coastline of North America.
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(SI Appendix, Fig. S8B). By reducing the biomass of the slow-
growing anammox bacteria, grazing lessens the main sink of
NH4

+ in these zones, allowing it to accumulate to persistently
high concentrations. The observed distribution of NH4

+ there-
fore does not support the grazing rates needed to stabilize the
ecosystem oscillations.
The distribution of NH4

+ within the ODZ provides a unique
and detectable geochemical signature of the microbial oscilla-
tions (Fig. 4). Over the course of the oscillation, shifts in the
balance of NH4

+ sources and sinks lead to its temporary accu-
mulation within the ODZ, at levels up to ∼10 times the mea-
surable detection limit of the most sensitive technique (∼10–
15 nM)—the orthophthalaldehyde (OPA) method. These NH4

+

spikes are short lived, however, occurring only ∼5% of the time
throughout the ODZ (O2 < 5 μM), such that the average model
concentration of NH4

+ remains below detection. We looked for
this potential signature of the oscillation by analyzing 18 depth
profiles of NH4

+ from the ETNP measured using the OPA
method (SI Appendix, Supplementary Information Text). Consistent
with the predicted time-mean NH4

+ concentrations, the average
observed concentration of NH4

+ in waters with O2 < 5 μM falls

below detection. However, in ∼8% of these measurements, we
find NH4

+ concentrations exceeding this detection limit, consis-
tent with the frequency predicted by ecological oscillations. NH4

+

measurements made with less sensitive conventional techniques
suggest spikes are also present in the eastern tropical South Pacific
and Arabian Sea ODZs outside the model domain (e.g., refs. 11,
29, and 30), but a quantitative analysis of these features will re-
quire more high precision data.
A transient accumulation of NH4

+ within the ODZ might also
be expected from excretion at depth by vertically migrating
zooplankton and micronekton (31, 32). Measured NH4

+ spikes
occur up to 100–300 m below the mean depth of diel vertical
migration recorded for this region (line and shading in Fig. 4). In
contrast, elevated NH4

+ within the ODZ is found over a similar
depth range to where ecological oscillations occur in the model.
Temporary spikes of NH4

+ could also arise from transitory
pulses of sinking organic matter that release NH4

+ into the ODZ
faster than it can be consumed. We tested whether changes in
the particle flux can produce NH4

+ spikes, by adding the ob-
served seasonal cycle in net primary production to a model
simulation with weak internal oscillations, and thus inherently

A B

C D

Fig. 3. Dynamics of the ecosystem oscillation. The oscillation of key ecosystem variables is shown in the phase space of NH4
+ and O2, from a representative

location at the suboxic boundary between the anoxic zone and the oxic ocean (i.e., same as in Fig. 1B at 400 m). Time proceeds in the counterclockwise
direction, indicated by spiraling arrows. NH4

+ and O2 levels are colored by (A) the concentration of NO2
− (μM), (B) the rate of O2 consumption by NO2

−

oxidation (μM O2 y−1), (C) the contribution of anammox to total N2 production (ƒamx), and (D) the rate of total N2 production (μM N y−1). Light colors are
always either low concentrations or low rates of activity. Straight arrows in A identify the dominant process driving changes in NH4

+ and O2 during each phase
of the cycle. Locations i–iv marked on the phase diagrams are described in the text.
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small pulses of NH4
+. In this case, even with forced fluctuations

in the supply of organic matter into the ODZ, the predicted
time-varying concentrations of NH4

+ barely exceed the mea-
sured detection limit at any depth. The measured spikes in NH4

+

therefore support strong nonequilibrium ecosystem behavior.
Ecological oscillations within the ODZ have direct conse-

quences for the fraction of total N loss that derives from
anammox (ƒamx) as opposed to heterotrophic denitrification (Fig.
5). The contribution of these metabolic pathways to N loss has
been observed to vary across and within the ODZs from direct
rate measurements in the field, but the causes of these variations
remain hotly debated (e.g., refs. 2, 4, and 32). During the course
of the oscillation, when NO2

− oxidizing bacteria are ascendant,
the NO2

− that would otherwise be reduced by heterotrophs is
reoxidized to NO3

−. The suppression of heterotrophic de-
nitrification temporarily allows NH4

+-limited anammox to con-
tribute 100% of local N2 production. However, after NO2

−

accumulates, the rapid bursts of heterotrophic denitrification
vastly exceed previous rates of anammox (Fig. 3 C and D) and
thereby dominate total N loss over a complete oscillatory cycle
(horizontal lines Fig. 5). These local variations in the balance of
N loss processes can temporarily obscure the time-mean gradi-
ents in ƒamx across the ODZ (15). Because they occur over an

extremely narrow range in the concentrations of O2, NH4
+, and

NO2
−, evaluating this ecological contribution to observed variations

in ƒamx will require frequent and high-precision measurements of
these chemical abundances and associated metabolic rates.
Oscillatory behavior is a common feature of idealized ecosystem

models with multiple interacting populations (33, 34), but is rarely
shown to persist in realistic representations of the environment such
as a three-dimensional ocean circulation. Intrinsic ecosystem os-
cillations provide a mechanism to generate variations in marine
microbial community structure and N and O2 cycling, which are
often ascribed to externally forced changes in physical and chemical
conditions. Because these oscillations lack spatial coherence and
power at decadal and longer timescales (Fig. 1A), they are unlikely
to explain large-scale decadal variations in N loss (5). However,
dynamics such as these may be pervasive beyond the ODZs, oc-
curring wherever the physical supply of resources selects for a mi-
crobial community that over time undermines its own ecological
niche by shifting the chemical environment to temporarily favor the
growth of its competitors or degrade the growth of its facilitators.
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− maximum, ƒamx approaches the
value of 0.28 and oscillations are weak (orange, red, and gray lines). Solid
lines are from the heart of the ODZ, whereas dashed lines are from its margins.
Time-mean contributions of anammox to N loss are shown as colored horizontal
lines on the Right axis.
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