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Temperature-dependent hypoxia
explains biogeography and severity of
end-Permian marine mass extinction
Justin L. Penn*, Curtis Deutsch*, Jonathan L. Payne, Erik A. Sperling

INTRODUCTION: Climate change triggered
by volcanic greenhouse gases is hypothesized
to have caused the largest mass extinction in
Earth’s history at the end of the Permian
Period (~252 million years ago). Geochemical
evidence provides strong support for rapid
global warming and accompanying ocean
oxygen (O2) loss, but a quantitative link among
climate, species’ traits, and extinction is lack-
ing. To test whether warming and O2 loss can
mechanistically account for the marine mass
extinction, we combined climate model sim-
ulations with an established ecophysiological
framework topredict thebiogeographicpatterns
and severity of extinction. Those predictions
were confirmed by a spatially explicit analysis
of the marine fossil record.

RATIONALE: The impact of climate change on
marine biodiversity depends onboth itsmagni-
tude and on species’ diverse biological sensiti-

vities. Tolerances ofmarine animals towarming
and O2 loss are physiologically related and can
be represented in a single metric: the ratio of
temperature-dependentO2 supply anddemand
rates. This ratio, termed theMetabolic Index (F),
measures the environmental scope for aerobic
activity and is governed by ocean conditions as
well as thermal and hypoxia sensitivity traits
that vary across species. If climate warming
andO2 loss reduceF below the species-specific
minimum requirement for sustained ecologi-
cal activity (Fcrit), the ocean would no longer
support active aerobic metabolism and, by ex-
tension, long-term population persistence.

RESULTS:We simulated the greenhouse gas–
drivenglobalwarmingat the endof thePermian
using a model of Earth’s climate and coupled
biogeochemical cycles thatmatches geochemical
proxy data. The imposed increase in atmo-
spheric greenhouse gas levels raises near-

surface ocean temperatures by more than
~10°C and depletes globalmarine O2 levels by
almost 80%.
To predict the impact of these changes on

animal habitat and survival, we measured the
frequencies ofMetabolic Index traits in diverse
living species and used them to define a set of
model ecophysiotypes.We populated themodel
Permian oceanwith each ecophysiotype wher-
ever conditions provide viable habitat (F ≥
Fcrit), yielding an ocean with diverse, locally
adapted ecophysiotypes throughout all regions.
Across the climate transition, however, ocean
warming increases the metabolic O2 demand
amid declining supply; this removes large frac-
tions of global aerobic habitat for the vast
majority of ecophysiotypes and implies a high
likelihood of extinction. We simulated the re-

sultingmass extinction of
ecophysiotypes and found
a robust geographic pat-
tern: Extinction intensity
should have been lower in
the tropics than at high
latitudes.The causeof low-

er tropical extinction is that organisms initially
inhabiting these warm, low-O2 environments
can better exploit those conditions when they
arise globally, whereas the habitats of more
polar species disappear completely.
To test the geographic selectivity of themodel

extinction, we comparedmodel predictions to
spatially explicit reconstructions of genus ex-
tinction from themarine fossil record.We found
that across diverse taxonomic groups, the ob-
served extinction intensity indeed increaseswith
latitude, consistentwith the predicted signature
of aerobic habitat loss. Comparison of themodel
to the fossil record implies that temperature-
dependent hypoxia can account for more than
half of the observed magnitude of regional ex-
tinction (i.e., extirpation).

CONCLUSION: Ocean warming and O2 loss
simulated in an Earth System Model of end-
Permian climate change implywidespread loss
of aerobic habitat among animal types with
diverse thermal and hypoxia tolerances. The
resulting extinctions are predicted to select
most strongly against higher-latitude species,
whose biogeographic niche disappears glob-
ally. The combined physiological stresses of
ocean warming and O2 loss largely account
for the spatial pattern and magnitude of ex-
tinction observed in the fossil record of the
“Great Dying.” These results highlight the
future extinction risk arising froma depletion
of the ocean’s aerobic capacity that is already
under way.▪
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Schematic illustration of temperature-dependent hypoxia as a driver of the end-Permian
marine mass extinction.Greenhouse gas forcing in a model of Earth’s climate at the end of the
Permian drives ocean warming (contours) and oxygen loss that match geochemical proxy data.
Ocean warming raises the organismal O2 demand amid declining supply. The resulting loss
of aerobic habitat for diverse physiologies induces a mass extinction in model animal types (line)
whose geographic signature—increased severity outside of the tropics—is consistent with
reconstructions from the marine fossil record (circles). IL
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Temperature-dependent hypoxia
explains biogeography and severity of
end-Permian marine mass extinction
Justin L. Penn1*, Curtis Deutsch1,2*, Jonathan L. Payne3, Erik A. Sperling3

Rapid climate change at the end of the Permian Period (~252 million years ago) is the
hypothesized trigger for the largest mass extinction in Earth’s history.We present model
simulations of the Permian/Triassic climate transition that reproduce the ocean warming
and oxygen (O2) loss indicated by the geologic record. The effect of these changes on
animal survival is evaluated using the Metabolic Index (F), a measure of scope for aerobic
activity governed by organismal traits sampled in diverse modern species. Modeled loss
of aerobic habitat predicts lower extinction intensity in the tropics, a pattern confirmed
with a spatially explicit analysis of the marine fossil record. The combined physiological
stresses of ocean warming and O2 loss can account for more than half the magnitude of
the “Great Dying.”

V
olcanic greenhouse gas release is widely
hypothesized to have been the geological
trigger for the largestmass extinction event
in Earth’s history at the end of the Permian
Period [~252 million years (Ma) ago] (1, 2).

At least two-thirds of marine animal genera and
a comparable proportion of their terrestrial coun-
terparts were eliminated, but the mechanisms
connecting environmental change to biodiver-
sity collapse remain strongly debated. Geological
and geochemical evidence points to high tem-
peratures in the shallow tropical ocean (3, 4),
an expansion of anoxic waters (5–8), ocean acid-
ification (9–12), changes in primary productivity
(13, 14), and metal (15) or sulfide (16, 17) poison-
ing as potential culprits. However, a quantita-
tive,mechanistic framework connecting climate
stressors to biological tolerance is needed to
assess and differentiate among proposed proxi-
mal causes.
In this study, we tested whether rapid green-

house warming and the accompanying loss of
oceanO2—the two best-supported aspects of end-
Permian environmental change—can together
account for the magnitude and biogeographic
selectivity of end-Permianmass extinction in the
oceans. Specifically, we simulated global warm-
ing across the Permian/Triassic (P/Tr) transition
using a model of Earth’s climate and coupled
biogeochemical cycles, validated with geochem-
ical data. We then used key physiological and
ecological traits measured in a diverse group of
extant species to predict the magnitude and dis-
tribution of habitat loss due to the temperature-

driven increase of metabolic O2 demand amid
declining supply (18). To assess the explanatory
power of this model, we compared the predicted
patterns of extinction to the global marine fossil
record.

Climate warming and ocean O2 loss

We simulated the P/Tr climate transition using
the Community Earth SystemModel, which com-
putes the exchanges of mass, energy, and mo-
mentum among interacting atmosphere, ocean,
land surface, and sea ice components (19). Em-
bedded in the ocean circulation are biogeochem-
ical cycles of O2, carbon, and nutrients driven by
multiple plankton types. An initial climate state
was equilibrated under low greenhouse gas con-
centrations and reconstructed paleogeography
(19, 20). The model was then subjected to an
instantaneous increase in greenhouse gas con-
centration that was sustained for 3000 years
in order to reach a warm, near-equilibrium cli-
mate (fig. S1). The initial climate and subsequent
radiative forcing were achieved by manipulat-
ing atmospheric pCO2 (partial pressure of CO2)
across levels chosen to reproduce tropical ocean
temperatures implied by isotopic proxy records
(3, 4, 19, 21). Because the rate and timing of cli-
mate change, as well as the resulting biotic dis-
turbance, are not precisely known, the analysis of
model output was based on pre-disturbance and
post-disturbance equilibriumstates,whichwe refer
to simply as Permian and Triassic, respectively.
The modeled Permian and Triassic climates

are consistent with geological proxy data for
ocean temperature. The imposed increase in
atmospheric pCO2 raises model near-surface
temperatures by ~11°C in the Paleo-Tethys sea
(Fig. 1A), consistent with reconstructions from
the d18O of biogenic (conodont microfossil) apa-
tite (d18Oapatite; Fig. 1B). Modeled warming is

amplified in the near-surface ocean outside of
the tropics (Fig. 1A) and throughout the upper
ocean relative to the deep (Fig. 1C). Warming
and fresh water input to the high-latitude sur-
face ocean (fig. S2) together strengthen density
stratification and weaken deep-water forma-
tion. From its near-modern state in the Permian,
the meridional overturning circulation slows in
the Triassic by more than 80% in both hemi-
spheres (fig. S3). Deep ocean stagnation reaches
its full extent after just ~300 years and persists
unabated for the duration of the simulation
(~3000 years).
The modeled Permian and Triassic climates

are also consistent with geological proxies for
marine anoxia. Abrupt warming and its attend-
ant effects deplete the globalmarineO2 inventory
by ~76% (~140 mmol/m3), leading to extensive
Triassic seafloor anoxia (Fig. 1D) that spans the
entire northern portion of the PanthalassaOcean
and the eastern tropics, similar to the observed
distribution of deeper-ocean sediments depo-
sited under anoxic conditions [e.g., (6, 22)]. The
global fraction of anoxic bottom water (ƒanox) in
the Permian (~0.1%) is close to modern values
(~0.2%) but rises to ~40% in the Triassic (Fig. 1E),
consistent with the expansion inferred from ura-
nium isotopes in marine carbonates (7, 8).
O2 loss is nearly complete in the abyss, but

varies strongly with latitude throughout the
upper ocean (Fig. 1F). At high latitudes, anoxia
develops in waters as shallow as 150 m. In con-
trast, O2 declines weakly or increases in portions
of the tropical thermocline. This pattern of O2

change cannot be explained by decreases in gas
saturation alone. It requires additional changes
in the cumulative loss of O2 frommicrobial respi-
rationbelow the surface ocean.Warming increases
the rate of phytoplankton growth, whereas strat-
ification increases their exposure to adequate
sunlight, especially in high latitudes where deep
convection and sea ice cover decline markedly.
As a result, surface nutrients are drawn down
in mid- and high latitudes and are exported in
sinking particles to the deep sea (14), thereby
reducing the nutrient supply to the tropical sur-
face ocean (23) (fig. S4). This shift in nutrient
distribution in turn lessens the microbial O2 de-
mand in the tropical thermocline, partially coun-
teracting the lowered gas saturation and limiting
O2 loss, even while anoxia develops elsewhere.

Aerobic habitat loss

The effect of warming and O2 loss on bio-
diversity in the end-Permian ocean depends
not only on the magnitude and pattern of en-
vironmental change, but also on the sensitiv-
ities of marine animals. Tolerances to hypoxia
and warming are physiologically related (24)
and can be represented in a single metric, the
Metabolic Index (F), derived from the ratio
of temperature-dependent rates of O2 supply
and demand (18, 19):

F ¼ Ao
pO2

exp �Eo
kB

1
T � 1

Tref

� �h i ð1Þ
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where pO2 and T are the O2 partial pressure
and temperature of ambient water, respectively;
kB is Boltzmann’s constant; and the parameters
Ao (kPa

−1) and Eo (eV) represent fundamental
physiological traits of a species. The inverse of
Ao (i.e., 1/Ao, in kPa) is the minimum pO2 that
can sustain the resting metabolic rate (i.e., the
“hypoxic threshold”) at a reference temperature
(Tref), and Eo is the temperature sensitivity of
that threshold (Fig. 2A). The Metabolic Index
measures the capacity of an environment to sup-
port aerobic activity by a factor of F above an
organism’s minimum requirement in a complete
resting state (F = 1). For both marine and terres-
trial animals, the energy required for sustained
activity (e.g., feeding, reproduction, defense) is
elevated by a factor of ~1.5 to 7 above resting
metabolic demand (18, 25) and represents an
ecological trait, termedFcrit. If climate warming
and O2 loss reduce the Metabolic Index for an
organism below its species-specific Fcrit, the
environment would no longer have the capacity
to support active aerobic metabolism and, by ex-
tension, long-term population persistence.
We evaluated the range and frequency of traits

governing theMetabolic Index across diversemod-
ern species (19). Physiological traits (1/Ao and Eo)

were estimated in 61 species that span benthic
and pelagic habitats in all ocean basins across
four phyla (Arthropoda, Chordata,Mollusca, and
Cnidaria). The species include 28malacostracans,
21 fishes, three bivalves and cephalopods, two
copepods, and one each for gastropods, ascidians,
scleractinian corals, and sharks (table S1); their
range of body mass spans eight orders of mag-
nitude. The ecological trait (Fcrit) was estimated
for 26 specieswith adequate biogeographical data.
All parameters exhibited well-defined distribu-
tions reflecting the diversity and frequency of key
metabolic traits among modern taxa at multiple
levels of taxonomic hierarchy (fig. S5) (19).
We used the observed trait distributions to

define a set ofmodel ecophysiotypes andpopulate
themodel Permianoceanwith each ecophysiotype
wherever its traits and ocean conditions provide
viable habitat (F ≥ Fcrit). Although modern spe-
cies and the environments they encounter differ
from those present during the Permian, the use
of modern hypoxia traits to define Permian eco-
physiotypes is grounded in two considerations.
First, among well-sampled modern taxonomic
groups, including arthropods, chordates, and
mollusks, the distributions of hypoxia traits are
not significantly different (fig. S5, B to D) (19).

This overlap of distributions implies a strong
selective pressure for diverse physiological strat-
egies for hypoxia tolerance and would apply to
any cosmopolitan taxonomic group, including
Permian phyla not well represented in our data-
base. Second, the broad similarity in the temper-
ature andO2 conditions encountered today and in
the simulated Permian climate (fig. S6) suggests
that, whatever their other anatomical and phys-
iological differences, the Permian aerobic envi-
ronment should have selected for a range and
frequency of hypoxia traits comparable to those
of modern species. To test the adaptive suitabil-
ity ofmodern trait diversity to the Permian ocean,
we examined whether all ecophysiotypes find
suitable habitat, and whether every region of the
Permian ocean would be habitable by some sub-
set of modern ecophysiotypes.
Variations in Permian environmental condi-

tions and the threeMetabolic Index traits give rise
to a diverse set of biogeographic ranges (Fig. 2,
B to D). For average physiological traits of the
studied species (1/Ao ~ 4.5 kPa and Eo ~ 0.4 eV),
F decreases with depth in the upper 1000m but
increases with latitude, restricting ecophysio-
types with higher ratios of active to restingmeta-
bolic rates to the extratropics (Fig. 2B). Because
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Fig. 1. Permian/Triassic ocean temperature and O2. (A) Map of near-
surface (0 to 70 m) ocean warming across the Permian/Triassic (P/Tr)
transition simulated in the Community Earth System Model. The region
in gray represents the supercontinent Pangaea. (B) Simulated near-
surface ocean temperatures (red circles) in the eastern Paleo-Tethys
(5°S to 20°N) and reconstructed from conodont d18Oapatite measurements
(black circles) (4). The time scale of the d18Oapatite data (circles) has
been shifted by 700,000 years to align it with d18Oapatite calibrated by U-Pb
zircon dates (open triangles) (1), which also define the extinction interval

(gray band). Error bars are 1°C. (C) Simulated zonal mean ocean warming
(°C) across the P/Tr transition. (D) Map of seafloor oxygen levels in
the Triassic simulation. Hatching indicates anoxic regions (O2 < 5 mmol/m3).
(E) Simulated seafloor anoxic fraction ƒanox (red circles). Simulated values
are used to drive a published one-box ocean model of the ocean’s
uranium cycle (8) and are compared to d238U isotope measurements
of marine carbonates formed in the Paleo-Tethys (black circles). Error
bars are 0.1‰. (F) Same as in (C) but for simulated changes in O2

concentrations (mmol/m3).
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the hypoxic threshold scales the magnitude of
F linearly (Eq. 1), variations in this parameter
have an effect on the distribution of habitat
similar to that ofFcrit. In contrast, the tempera-
ture sensitivity parameter determines where F
reaches its extreme values for a given distribu-
tion of temperature and O2 (Fig. 2, C and D). For
ecophysiotypes whose hypoxic thresholds are
onlyweakly temperature-dependent (Eo < 0.1 eV),
F is maximized in the shallow low-latitude ocean
(Fig. 2C). For the most temperature-sensitive
ecophysiotypes (Eo ~ 1.0 eV),F is greatest in the
relatively cold waters of the high-latitude upper
ocean and aerobic habitat expands with depth
(Fig. 2D). The predicted niche partitioning leaves
virtuallynopart of thePermianoceanuninhabited,
partially confirming the relevance of modern trait
diversity for the Permian.
Metabolic Index traits also have a strong im-

pact on the predicted volume of available aerobic
habitat (Fig. 3A). Ecophysiotypes with higher
temperature sensitivities are able to inhabit the
largest ocean volumes because most deep waters
in the simulated Permian ocean are cold. In turn,
ecophysiotypeswith lowhypoxic thresholds and/
or low values ofFcrit can occupy the largest ocean
regions for a given temperature sensitivity. Sim-
ulated Permian habitat is available for ~95% of
modernMetabolic Index trait combinations, both
as global ocean volume (points in Fig. 3A) and as
area on the seafloor (fig. S7A), further confirming
that extant trait diversity is well adapted to the
end-Permian ocean and is thus a sensible base-
line for examining habitat loss and extinction.
Across the simulated climate transition, warm-

ing andO2 loss remove amajor fraction of aerobic
habitat in the upper 1000 m for most ecophysio-
types (Fig. 3B) by lowering their metabolic
indices below Fcrit. The loss of habitat exceeds
90% for an ecophysiotypewith the average traits;
the vast majority (~95%) of ecophysiotypes ex-
perience declines, withmagnitudes ranging from
~20% to 100% (fig. S8). Habitat loss preferen-
tially selects against organismswith high hypoxic
thresholds, high ratios of active to resting meta-
bolic rates, and/or high temperature sensitivities.
The former two traits impart low initial habitat
volumes (Fig. 3A), whereas high temperature
sensitivities amplify the decline in F per degree
of warming. These patterns of differential hab-
itat loss across ecophysiotypes are also found for
coastal seafloor habitats (fig. S7B) and are quali-
tatively similar across oceandepth, but the average
magnitude of habitat loss increases in the abyss
because of the more complete O2 loss (fig. S9).

Geography of global extinction

The severity of aerobic habitat loss predicted
across the warming interval implies a high like-
lihood of extinction for many ecophysiotypes.
We simulated the extinction of ecophysiotypes,
defined by a fractional loss of global aerobic
habitat volume (DVi, where i indexes ecophysio-
type) exceeding a specified critical threshold
(Vcrit; Fig. 4A) (19), in waters above a maximum
depth. Becausemaximumhabitat depth andVcrit

are poorly known ecological traits that are likely
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Fig. 2. Physiological and ecological traits of the Metabolic Index (F) and its end-Permian
distribution. (A) The critical O2 pressure (pO2

crit) needed to sustain resting metabolic rates
in laboratory experiments (red circles, Cancer irroratus) vary with temperature with a slope
proportional to Eo from a value of 1/Ao at a reference temperature (Tref), as estimated by linear
regression when F = 1 (19). Energetic demands for ecological activity increase hypoxic thresholds
by a factor Fcrit above the resting state, a value estimated from the Metabolic Index at a species’
observed habitat range limit. (B) Zonal mean distribution of F in the Permian simulation for
ecophysiotypes with average 1/Ao and Eo (~4.5 kPa and 0.4 eV, respectively). (C and D) Variations
in F for an ecophysiotype with weak (C) and strong (D) temperature sensitivities (Eo = 0 eV and
1.0 eV, respectively), both with 1/Ao ~ 4.5 kPa. Example values of Fcrit (black lines) outline different
distributions of available aerobic habitat for a given combination of 1/Ao and Eo.

Fig. 3. Aerobic habitat during the end-Permian and its change under warming and O2 loss.
(A) Percentage of ocean volume in the upper 1000 m that is viable aerobic habitat (F ≥ Fcrit)
in the Permian for ecophysiotypes with different hypoxic threshold parameters 1/Ao and
temperature sensitivities Eo. (B) Relative (percent) change in Permian aerobic habitat volume
(DVi, where i is an index of ecophysiotype) under Triassic warming and O2 loss. Colored contours
are for ecophysiotypes with Fcrit = 3. Measured values of 1/Ao and Eo in modern species are
shown as black symbols, but in (B) these are colored according to habitat changes at a species’
specific Fcrit where an estimate of this parameter is available. The gray region at upper left
indicates trait combinations for which no habitat is available in the Permian simulation.
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to vary across species, we computed the extinc-
tion across a wide range of values for these pa-
rameters. However, the geographical signature
of the predicted mass extinction remains essen-
tially the same irrespective of habitat depth and
Vcrit; extinction intensity should have been lower
for tropical communities than for those at higher
latitudes.
The latitudinal gradient of extinction pre-

dicted from the Metabolic Index arises from
the fundamental niche partitioning of Permian
ecophysiotypes across latitude prior to thewarm-
ing (Fig. 4B and fig. S10A). Ecophysiotypes with
higher hypoxic thresholds and/or ratios of active
to resting metabolisms are preferentially exter-
minated when the high latitudes warm and lose
O2 because they have no escape from inhospitable
conditions. In contrast, ecophysiotypes whose
Permian habitat includes the tropics must have
traits pre-adapted towarm, low-O2 environments
and can better exploit these conditions when
they arise globally. The extinction gradient is thus
predicted to occur as long as the temperature-
dependent hypoxia tolerance varies among eco-
physiotypes, and as long as those with lower
tolerance are confined to higher-latitude waters
with a greater capacity to support aerobic activ-
ity. Under these conditions, the extinction pat-
tern is only weakly dependent on the spatial
gradients of climate warming and O2 loss (fig.
S10B), and holds regardless of the precise fre-
quency distribution of Permian traits (figs. S10B,
S11, and S12); the pattern also holds if habitat is
defined by area on the seafloor or volume in
the water column (fig. S13).
To test the predicted geographic selectivity

of aerobic habitat loss, we compared the model
extinction patterns to the reconstructed distri-
bution of genus extinction across latitude (Fig. 4A
and table S2) derived from fossil occurrences in
the Paleobiology Database (19). The global mean
magnitude of extinction estimated from the fos-
sil compilation (~65% of genera) agrees with
globally aggregated estimates (26) but displays a
previously undescribed gradient across latitude,
consistent with the model predictions. The ob-
served extinction intensity increases by ~20%
from the tropics to high latitudes, reaching at
least 75% of genera outside of the tropics in
both hemispheres. This trend is found in mul-
tiple taxonomic groupings, including those phyla
with traitsmultiply sampled amongmodern taxa
(arthropods, chordates, and mollusks) and in
those that are not (fig. S14A). It is also robust to
latitudinal differences in sampling intensity (fig.
S14, B to D) and changes in the preservation of
major depositional environments (fig. S15) (19).
The correspondence between the simulated and
observed geographic patterns of selectivity strong-
ly implicates aerobic habitat loss, driven by rapid
warming, as a main proximate cause of the end-
Permian extinction.

Magnitude of regional extinction
Unlike the global extinction of ecophysiotypes,
regional extinction (i.e., extirpation) in themodel
does not depend on V crit or habitat depth. The

simulated extirpation is defined at a given lo-
cation by the percentage of ecophysiotypes
whose Metabolic Index is pushed below Fcrit

by Triassic climate change (19). Similar to global
extinction, the extirpation of ecophysiotypes is
elevated at higher latitudes but increases less
systematically from the tropics (Fig. 4C). This
pattern of ecophysiotype loss arises from the
counteracting influences of global warming
and O2 loss on local aerobic habitat. Declining
seawater O2 concentrations drive extirpation in
up to ~70% of ecophysiotypes in the high lati-
tudes, but its impact diminishes to less than

~20% of ecophysiotypes in the tropics, where
O2 loss is weak (Fig. 1F). The effect of warming
predicts the opposite pattern, with peak extir-
pation of ~65% at the equator dropping to ~20%
at the poles. Local aerobic habitat is more sen-
sitive per degree of warming in the tropics than
in the high latitudes because F is already close
to Fcrit for the majority of Permian ecophysio-
types (Fig. 2, B to D). The realized impact of
temperature on local habitat is therefore largest
in the tropics because the pattern of upper-ocean
warming is relatively constant across latitude (Fig.
1C), in contrast to the pattern of O2 loss (Fig. 1F).
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Fig. 4. Global and regional extinction at the end of the Permian. (A) Global extinction versus
latitude, as predicted for model ecophysiotypes and observed in marine genera from end-Permian
fossil occurrences in the Paleobiology Database (PBDB). Model extinction is calculated from the
simulated changes in Permian global aerobic habitat volume (DVi) under Triassic warming and O2

loss (19). The maximum depth of initial habitat and fractional loss of habitat resulting in extinction
(Vcrit) are varied from 500 to 4000 m (colors) and from 40 to 95% (right-axis labels), respectively.The
observed extinction of genera combines occurrences from all phyla in the PBDB (points). Error bars
are the range of genera extinction across two taxonomic groupings: phyla multiply sampled in the
modern physiology data (arthropods, chordates, and mollusks) and all other phyla. Latitude bands
with fewer than five Permian fossil collections are excluded. The average range is used for latitude
bands missing extinction estimates from both taxonomic groupings (i.e., 80°S, 30°S, and 40°N). The
main latitudinal trend—increased extinction away from the tropics—is found when including all data
together and when restricting to the best-sampled latitude bands (fig. S14). In all panels, model values
are averaged across longitude and above 500 m. (B) Average hypoxic threshold and Fcrit across
ecophysiotypes versus latitude in the Permian. In (B) to (D), shading represents the 1s standard
deviation at each latitude. (C) Regional extinction (i.e., extirpation) versus latitude for model
ecophysiotypes, with individual contributions from warming and the loss of seawater O2 concentration.
Extirpation occurs in locations where the Metabolic Index meets the active demand of an
ecophysiotype in the Permian (F ≥ Fcrit) but falls below this threshold in the Triassic (F < Fcrit).
(D) Same as (C) but including globally extinct ecophysiotypes (using a maximum habitat depth
of 1000 m and Vcrit = 80%), and as observed in marine genera from end-Permian and early Triassic
fossil occurrences of all phyla in the PBDB. Observed extirpation magnitudes are averaged across
tropical and extratropical latitude bands (red points and horizontal lines). Regional 1s standard
deviations are shown as vertical lines.
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To test the predicted intensity of regional ex-
tinction, we used fossil occurrence data to esti-
mate the extirpation of marine genera across the
end-Permian extinction (19). The fossil extirpation
intensities are more severe than fossil extinction
intensities across all latitude bands (global mean
~93% ± 8% spatial SD) but show a similar gra-
dient, increasing outside of the tropics (Fig. 4D).
Extirpation exceeds extinction because not all
locally lost genera disappeared globally, whereas
all extinct genera were, by definition, extirpated
everywhere.We can account for the effect of glob-
ally extinct ecophysiotypes in the model extirpa-
tion by using a combination of V crit and habitat
depth that predicts an equal contribution of aer-
obic habitat loss to both the observed regional
and global extinction (19). Doing so increases the
extirpation outside of the tropics, yielding a lati-
tudinal gradient similar to the fossil data.
If we assume that the fossil occurrences pri-

marily reflect habitat conditions above 500 m
water depth (27), the global mean magnitude of
ecophysiotype extirpation (67%± 18% spatial SD)
accounts for ~72% of the mean observed magni-
tude of genera extirpation (i.e., 93%; Fig. 4D). In-
cluding in this comparison the spatial variations
inmodel extirpation yields a range explaining ~53
to 92% of the observed extirpationmagnitude. Ad-
ditional extinctionsdue to temperature-dependent
hypoxia would have likely arisen from ecolog-
ical interactions (28), including foodweb effects,
because hypoxia-tolerant species could still be
eliminated if they were dependent on hypoxia-
vulnerable ones. Temperature-dependent hypoxia
can thus account for the majority of biodiversity
losses during the end-Permian mass extinction.

Discussion

Global warming and ocean O2 loss were accom-
panied by other Earth system changes during
the end-Permian crisis that likely added to the
effects of temperature-dependent hypoxia. In
our simulations, net primary productivity is re-
duced by ~40% globally, with strongest declines
in the low latitudes, where essential nutrient sup-
ply to phytoplankton is most curtailed (fig. S4).
Thus, acting alone, productivity losses would
amplify extinction risk outside of the high lati-
tudes, opposite to the pattern observed in the
fossils.
Outgassing of CO2 from the Siberian Traps

would also have acidified the ocean (12), causing
additional impacts via hypercapnia and/or re-
duced calcification (9, 29). These CO2 effects are
hypothesized to drive taxonomically selective ex-
tinctions, whichmay account for the ~10% lower
mean genus extinction intensity for arthropods,
chordates, andmollusks than for other less phys-
iologically buffered phyla (fig. S14A). For themost
heavily calcified animals in our modern trait
dataset, the cold-water coralLophelia pertusa and
the scallop Pecten maximus, predicted losses of
aerobic habitat are ~94% and ~100%, respectively,
suggesting a high extinction risk for calcifiers even
without a direct CO2 effect. Attributing taxonomi-
cally selective extinction (9, 29) to physiological
mechanisms will require more metabolic trait

data, including from CO2 effects on both calci-
fication and aerobic habitat (hypercapnia), and
from Permian phyla underrepresented in our
database. However, the latitudinal gradient of
extinction arising from the carbon cycle per-
turbation is unlikely to explain higher rates of
tropical species persistence, for the same reason
that hypoxia increases extinction at higher lati-
tudes. Because the most corrosive waters are
found poleward, species least tolerant of low pH
or carbonate saturation would have been con-
fined to the tropics and thus without refuge in
an acidifying ocean.
The end-Permian mass extinction resulted in

the largest loss of animal diversity in Earth’s his-
tory, and its proposed geologic trigger—volcanic
greenhouse gas release—is analogous to an-
thropogenic climate forcing. Predicted patterns
of future ocean O2 loss under climate change
(30, 31) are broadly similar to those simulated
here for the P/Tr boundary. Moreover, green-
house gas emission scenarios projected for the
coming centuries (32) predict a magnitude of
upper ocean warming by 2300 CE that is ~35 to
50% of that required to account for most of the
end-Permian extinction intensity. Given the fun-
damental nature of metabolic constraints from
temperature-dependent hypoxia inmarine biota,
these projections highlight the potential for a
future mass extinction arising from depletion
of the ocean’s aerobic capacity that is already
under way.
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wise to take note.
extinctions. Because similar environmental alterations are predicted outcomes of current climate change, we would be 
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